Comparing the Bank Failure Prediction Performance of Neural Networks and Support Vector Machines: the Turkish Case
نویسنده
چکیده
Experience from the banking crises during the past two decades suggest that advanced prediction models are needed for helping prevent bank failures. This paper compares the ability of artificial neural networks and support vector machines in predicting bank failures. Although artificial neural networks have widely been applied complex problems in business, the literature utilizing support vector machines is relatively narrow and their capability for predicting bank failures is not very familiar. In this paper, these two intelligent techniques are applied to a dataset of Turkish commercial banks. Empirical findings show that although the prediction performance of the two models can be considered as satisfactory, neural networks show slightly better predictive ability than support vector machines. In addition, different types of error from each model also indicate that neural network models are better predictors.
منابع مشابه
Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data
This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values. Seismic surveying was performed next on these models. F...
متن کاملA Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملPrediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine
Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملPredicting bank financial failures using neural networks, support vector machines and multivariate statistical methods: A comparative analysis in the sample of savings deposit insurance fund (SDIF) transferred banks in Turkey
Bank failures threaten the economic system as a whole. Therefore, predicting bank financial failures is crucial to prevent and/or lessen the incoming negative effects on the economic system. This is originally a classification problem to categorize banks as healthy or nonhealthy ones. This study aims to apply various neural network techniques, support vector machines and multivariate statistica...
متن کامل